We live in an age that inundates us with more data than we have ever had before. And more data means better decisions, right?

Sadly, that's not necessarily the case.

Back in 2012, management consultancy CEB, now a subsidiary of Gartner, studied how more than 5,000 employees in 22 global companies used data in their decision-making.

The researchers concluded that there were three categories of workers:

  1. The visceral decision-makers, who followed their instincts rather than the numbers
  2. The unquestioning empiricists, who followed the data slavishly
  3. The informed skeptics, who considered the data but used it with caution

That third category—those who used data with a measure of skepticism, balancing the figures with their own judgement—ultimately made the best decisions.

How can we take advantage of the blessings of evidence without being led astray by numerical mirages?

The best place to start is with a good sense of how stats can let us down.

1. Things Change

Gathering data and learning from it can be such an effort that sometimes we cling a little too tightly—and too long—to the truths we learn. But, to put it simply, things change, and so what was true two or three years ago might not be true today.

Say you concluded a couple of years ago that your AdWords campaign would never match the effectiveness of your SEO efforts, and you just gave up on it. It might have been a wise decision then, but what if in the last three years or so the returns of paid listings vs. organic listings on search has doubled or tripled, and organic click-through rate has fallen.

So, is what you knew to be true still true?

Our changing world demands that our conclusions be periodically revalidated. Keeping your truth up-to-date takes work.

2. Past Is Not Present

It's standard statistical practice to come to a conclusion about a larger set of data by examining a smaller portion of it. Similarly, it's standard practice to use performance data from the recent past as an indicator of at least near-future performance.

For example, if you would like to project how many conversions you will get this year, it's reasonable to look at your past-year performance to use as a baseline.

However, to do that you need to make sure that there's no variable that is skewing the result during the base period you're examining. Was there a promotion in the base period? Has there been a significant price hike since then? Is seasonality a factor?

Likewise, if you are looking at data retroactively and you are trying to see whether there is a correlation between an action you took and a result, check to see whether there are any lurking variables that might have also influenced the result.

3. Sampling Error

Enter your email address to continue reading

How Data Can Lead You Astray: Six Costly Mistakes

Don't worry...it's free!

Already a member? Sign in now.

Sign in with your preferred account, below.

Did you like this article?
Know someone who would enjoy it too? Share with your friends, free of charge, no sign up required! Simply share this link, and they will get instant access…
  • Copy Link

  • Email

  • Twitter

  • Facebook

  • Pinterest

  • Linkedin


ABOUT THE AUTHOR

image of William Gadea

William Gadea is the founder of IdeaRocket LLC, a maker of animated videos for business.

LinkedIn: William Gadea